
一、基本信息
姓 名:龙玉华
职 称:教授
研究领域:微分方程、差分方程定性理论以及其在生物数学中的应用研究
办公地点: 行政西前座441室
电子邮箱:[email protected]
二、个人简介
龙玉华 1974年出生,博士,教授,博士生导师。主要从事微分方程、差分方程定理理论及其在生物数学中的应用研究。在《Commun. Nonlinear Sci. Numer. Simul.》、《Communications on Pure and Applied Analysis 》、《J. Difference Equ. Appl.》等SCI收录期刊发表学术论文40余篇,8篇论文曾先后入选ESI高被引论文。主持国家自然科学基金面上项目与青年项目各1项、广州市属高校科研计划项目1项。参加教育部高层次人才与创新团队发展计划项目、国家自然科学基金重点项目、教育部高校博士点基金等多项科研项目。
三、教育背景
2001.9-2006.12 湖南大学数学与计量经济学院 硕博直读
1994.9-1998.7 吉首大学数学系 本科
四、职业经历
1.学术工作经历
2007.4-至今 杏吧视频
2.海外工作经历
2017.12-2018.12 加拿大新布伦瑞克大学访问学者
五、教授课程
高等数学、线性代数、常微分方程(本科)
泛函微分方程(研究生)
六、科研服务
近年主持的研究项目:
国家自然科学基金面上项目:时空离散系统的动力学性质,编号:12471177,在研
国家自然科学基金青年项目:离散Hamilton系统周期解的最小周期,编号:11101098,结题
七、研究成果
近期发表的部分论文
[1] 、Yuhua Long, Qinqin Zhang. Homoclinic and ground state solutions of partial difference equations with parametric potentials. Communications on Pure and Applied Analysis, 2025, 24(11): 2106-2129. doi: 10.3934/cpaa.2025071
[2] Yuhua Long, Sha Li. Existence and multiplicity of homoclinic solutions for ϕc -Laplacian parametric partial difference equations[J]. Mathematical Methods in the Applied Sciences, 0 (2025), 1-12.
[3] Yuhua Long, Xiaofeng Pang, Qinqin Zhang. Codimension-one and codimension-two bifurcations of a discrete Leslie-Gower type predator-prey model. Discrete and Continuous Dynamical Systems - B, 2025, 30(4): 1357-1389. doi: 10.3934/dcdsb.2024132
[4] Dan Li, Yuhua Long. On periodic solutions of second-order partial difference equations involving p-Laplacian[J]. Communications in Analysis and Mechanics, 2025, 17(1): 128-144. doi: 10.3934/cam.2025006
[5] Yuhua Long. On homoclinic solutions of nonlinear Laplacian partial difference equations with a parameter. Discrete and Continuous Dynamical Systems - S. doi: 10.3934/dcdss.2024005
[6] Yuhua Long,Least energy sign-changing solutions for discrete Kirchhoff-type problems,Applied Mathematics Letters, 150(2024), 108968, //doi.org/10.1016/j.aml.2023.108968.
[7] Yuhua Long*.Multiple results on nontrivial solutions of discrete Kirchhoff type problems. Journal of Applied Mathematics and Computing, 69, 1–17 (2023). //doi.org/10.1007/s12190-022-01731-0
[8] Yuhua Long*.Nontrivial solutions of discrete Kirchhoff type problems via Morse theory. Advances in Nonlinear Analysis, (2022),11(1): 1352-1364. //doi.org/10.1515/anona-2022-0251
[9] Yuhua Long,Lin Wang*.Global dynamics of a delayed two-patch discrete SIR disease model. Communications on Nonlinear Science and Numerical Simulations, 83 (2020): 105117.
[10] Yuhua Long*.Existence of multiple and sign-changing solutions for a second-order nonlinear functional difference equation with periodic coefficients. Journal of Difference Equations and Applications, 26(7) (2020): 966-986.