一、基本信息

研究领域:偏微分方程

办公地点:电子信息楼610室

电子邮箱:[email protected]


二、个人简介

王光武,湖北十堰人。2017年7月博士毕业于中国工程物理研究院基础数学专业,师从郭柏灵院士。2017年进入杏吧视频 工作。主要研究方向为:偏微分方程;主要研究:量子流体力学方程,磁流体方程, Landau-Lifshitz方程等数学物理中的一些偏微分方程,目前已在 J. Diff. Eqns., Disc. Cont. Dyn. Syst.,J.Math. Anal. Appl., Math. Methods Appl. Sci., Sci. China Math.等国内外专业学术期刊上发表二十多篇论文, 已主持完成一项国家自然科学基金青年项目。


三、教育背景

2007年9月-2011年6月,三峡大学, 数学与应用数学专业,本科

2011年9月-2014年6月, 浙江工业大学,应用数学,硕士,导师:张隽教授

2014年9月-2017年7月,中国工程物理研究院研究生部,基础数学,博士,导师:郭柏灵院士


四、职业经历

1.学术工作经历

2017年7月-至今 杏吧视频 。


五、教授课程

《数学模型》、《数学实验》、《线性代数》、《高等数学》等


六、科研服务

近年主持的研究项目

国家自然科学基金青年项目,量子流体力学的若干数学问题,立项时间:2019年1月1日-2021年12月31日。


七、研究成果

1.论著目录

[1] 可压缩量子流体力学方程及其数学理论(英文版),浙江科学技术出版社, 2019-06-01, ISBN: 9787534185557

[2] 可压缩量子流体力学方程及其数学理论(中文版), 浙江科学技术出版社,2019-06-01, ISBN:9787534185083

2.近期接收或发表的代表性文章

[1] Chen B., Wang G. W., Wang Y. D., Existence of weak solutions and regular solutions to the incompressible Shrödinger flow, Comm. Contem. Math, Accept, 2025.

[2] Chen J. M., Wang, G. W., Very regular solution to the Landau-Lifshitz-Maxwell system coupled with spin accumulation process, Disc. Cont. Dyn. Syst. Ser. B, 2025, 30(12): 4541-4582.

[3] Chen J. M., Wang, G. W., Very regular solution to the Landau-Lifshitz-Gilbert equation with Dzyaloshinskii-Moriya interaction term and V-flow term, Acta Math. Appl. Sinica, Engl. Series, Accept, 2025.

[4] Qiu Z., Wang G.W., Partial regularity and the parabolic fractal dimension of singular points for the suitable weak solutions to 3D incompressible Navier-Stokes-Landau-Lifshitz system, Z. Angew. Math. Phys., Accept, 2025.

[5] Wang G. W., Yang H., Zhang J., Global Existence of Smooth Solutions to the Incompressible 2D Navier-Stokes-Landau-Lifshitz Equations with the Dzyaloshinskii-Moriya Interaction and V-Flow Term, Contem. Math., 2025, 6(2), 1803.

[6] Qiu Z., Wang G.W., On blow up criteria for incompressible Navier-Stokes-Landau-Lifshitz system with Dzyaloshiskii-Moriya interaction and V-flow, Math. Meth. Appl. Sci., Accept, 2025,

[7] Qiu Z., Wang G.W., Serrin-type blow-up criteria for 2D incompressible Navier-Stokes- Landau-Lifshitz system, Acta Math. Sci., 2025, 45B(3):1063-1077.

[8] Wang G. W., Guo B. L., Global existence of smooth solutions for the incompressible Landau-Lifshitz-Gilbert flow with Dzyaloshinskii-Moriya interaction in two-dimensional torus and R^2, Math. Meth. Appl. Sci., 2024, 47(7): 5848–5878.

[9] Qiu Z., Wang G. W., Blow up criteria for three-dimensional incompressible Navier- Stokes-Landau-Lifshitz system in the whole space, J. Math. Appl. Anal., 2024, 536(1): 128222.

[10] Z. Qiu, G.W. Wang, A blowup criterion for nonhomogeneous incompressible Navier–Stokes–Landau– Lifshitz system in 2-D, Math. Meth. Appl. Sci., 2023, 46(2), 2500-2516

[11] G.W. Wang, Y.D. Wang, Global smooth solution to the incompressible Navier-Stokes-Landau-Lifshitz equations, Acta Math. Appl. Sinica, Engl. Series, 2023, 39(1), 135-178

[12] G.W. Wang, B.L. Guo, Global weak solution to the degenerate quantum Navier-Stokes-Maxwell equations with damping term, Z. Angew. Math.Mech., 2022, 102(6), e201800219

[13] Guangwu Wang, Boling Guo, A new blow-up criterion of the strong solution to the quantum hydrodynamic model, Applied Mathematics Letter, 2021, 119, 10705.

[14] Guangwu Wang, Boling Guo, A blow-up criterion of strong solutions to the quantum hydrodynamic model, Acta Mathematica Scientia, 2020, 40B(3):1-11.

[15] Guangwu Wang, Boling Guo, Existence and blow-up of the solutions to the viscous quantum magnetohydrodynamic nematic liquid crystal model, Science China Mathematics,2019, 62(3): 469-508.

[16] Guangwu Wang, Boling Guo, Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity, Discrete and Continuous Dynamical Systems-Series B, 2019, 24(11): 6141-6166 .

[17] Guangwu Wang, Boling Guo, Shaomei Fang, Blow-up of the smooth solutions to the Compressible Navier-Stokes equations, Mathematical Methods in the Applied Science, 2017, 40: 5262–5272

[18] Guangwu Wang, Boling Guo, Existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz model in 2-dimension, Acta Mathematica Scientia, 2017, 37 (5) :1361–1372.

[19] Boling Guo, Guangwu Wang, Blow-up of the smooth solution to quantum hydrodynamic models in $R^d$, Journal of Differential Equations, 2016, 162(7): 3815-3842

[20] Boling Guo, Guangwu Wang, Vanishing viscosity limit for the 3D magnetohydrodynamic system with generalized Navier-slip boundary conditions, Mathematical Methods in the Applied Science, 2016, 39(15): 4526-4534

[21] Boling Guo, Guangwu Wang, Existence of the solution for the viscous bipolar quantum hydrodynamic model, Discrete and Continuous Dynamical Systems Series A, 2017, 37(6): 3183-3210

[22] Boling Guo, Guangwu Wang, Blow-up of solutions to quantum hydrodynamic models in half space, Journal of Mathematical Physics, 2017, 58: 031505